
SimEvents
For Use with Simulink®

Modeling

Simulation

Implementation

Getting Started
Version 1



How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with SimEvents
© COPYRIGHT 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)



Contents

Introduction

1
What Is SimEvents? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

What Is Discrete-Event Simulation? . . . . . . . . . . . . . . . . . . 1-2
Resources for Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Installing SimEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

What Is an Entity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

What Is an Event? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Relationships Among Events . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Viewing Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

Running a Demo Simulation . . . . . . . . . . . . . . . . . . . . . . . . 1-9
Opening the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
Examining Entities and Signals in the Model . . . . . . . . . . . 1-10
Key Components of the Model . . . . . . . . . . . . . . . . . . . . . . . 1-11
Running the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13

Building Simple Models with SimEvents

2
Building a Simple Discrete-Event Model . . . . . . . . . . . . . 2-2

Opening a Model and Libraries . . . . . . . . . . . . . . . . . . . . . . 2-2
Moving Blocks into the Model Window . . . . . . . . . . . . . . . . 2-6
Configuring Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Connecting Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Running the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Creating Additional Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Information About Race Conditions and Random Times . . 2-22

i



Building a Simple Hybrid Model . . . . . . . . . . . . . . . . . . . . 2-23
Opening a Time-Based Simulink Demo . . . . . . . . . . . . . . . . 2-23
Adding Event-Based Behavior . . . . . . . . . . . . . . . . . . . . . . . 2-24
Running the Hybrid F-14 Simulation . . . . . . . . . . . . . . . . . 2-27
Visualizing the Sampling and Latency . . . . . . . . . . . . . . . . 2-28
Modifying the Model to Drop Some Messages . . . . . . . . . . . 2-30

Key SimEvents Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Meaning of Entities in Different Applications . . . . . . . . . . . 2-34
Entity Ports and Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Data and Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35

Creating Entities Using Intergeneration Times

3
Role of Entities in SimEvents Models . . . . . . . . . . . . . . . . 3-2

Data and Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Creating Entities in a Model . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Varying the Interpretation of Entities . . . . . . . . . . . . . . . . . 3-2

Introduction to the Time-Based Entity Generator . . . . 3-3
Accessing the Time-Based Entity Generator . . . . . . . . . . . . 3-3

Specifying the Distribution of Intergeneration
Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Example: Using Random Intergeneration Times in a

Queuing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Using Intergeneration Times from a Signal . . . . . . . . . . 3-6
Example: Using a Step Function as Intergeneration

Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Example: Using an Arbitrary Discrete Distribution as

Intergeneration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Using Generation Times from a Vector . . . . . . . . . . . . . . . 3-11
Configuring the Block to Generate Entities at Specified

Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Sample Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13

ii Contents



Basic Queues and Servers

4
Role of Queues in SimEvents Models . . . . . . . . . . . . . . . . 4-2

Physical Queues and Logical Queues . . . . . . . . . . . . . . . . . 4-2
Accessing Queue Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Role of Servers in SimEvents Models . . . . . . . . . . . . . . . . 4-4
What Servers Represent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Accessing Server Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

Using FIFO Queue and Single Server Blocks . . . . . . . . . 4-6
Varying the Service Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Constructs Involving Queues and Servers . . . . . . . . . . . . . . 4-8
Example of a Logical Queue . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

Designing Paths for Entities

5
Role of Paths in SimEvents Models . . . . . . . . . . . . . . . . . . 5-2

Implications of Entity Paths . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Overview of Routing Library for Designing Paths . . . . . . . 5-3

Using the Output Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Sample Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Example: Selecting the First Available Server . . . . . . . . . . 5-6
Example: Using an Attribute to Select an Output Port . . . 5-8

Using the Input Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Example: Round-Robin Approach to Choosing Inputs . . . . 5-9

Combining Entity Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Sequencing Simultaneous Pending Arrivals . . . . . . . . . . . . 5-13
Difference Between Path Combiner and Input Switch . . . . 5-14

Example: A Packet Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Generating Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17

iii



Storing Packets in Input Buffers . . . . . . . . . . . . . . . . . . . . . 5-19
Routing Packets to Their Destinations . . . . . . . . . . . . . . . . 5-20
Connecting Multiple Queues to the Output Switch . . . . . . 5-20
Modeling the Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21

Selected Bibliography

6

Index

iv Contents



1

Introduction

What Is SimEvents? (p. 1-2) The product and the kinds of tasks
it can perform

Installing SimEvents (p. 1-5) Notes about installing this product
and its prerequisites

What Is an Entity? (p. 1-6) Definition of a key SimEvents
concept

What Is an Event? (p. 1-7) Introduction to events in SimEvents

Running a Demo Simulation (p. 1-9) Exploring a SimEvents
demonstration model



1 Introduction

What Is SimEvents?
SimEvents extends Simulink® with tools for modeling and simulating
discrete-event systems using queues and servers. With SimEvents you can
create a discrete-event simulation model in Simulink to simulate the passing
of entities through a network of queues, servers, gates, and switches based
on events. SimEvents and Simulink provide an integrated environment for
modeling hybrid dynamic systems containing continuous-time, discrete-time,
and discrete-event components.

What Is Discrete-Event Simulation?
Informally, a discrete-event simulation, or event-based simulation, permits
the system’s state transitions to depend on asynchronous discrete incidents
that are called events. By contrast, a simulation based solely on differential
equations in which time is an independent variable is a time-based simulation
because state transitions depend on time. Simulink is designed for time-based
simulation, while SimEvents is designed for discrete-event simulation.
Your choice of a different simulation style can depend on the particular
phenomenon you are studying and/or the way you choose to study it. Some
examples illustrate these differences:

• Suppose you are interested in how long the average airplane waits in
a queue for its turn to use an airport runway, but not interested in the
details of how an airplane moves once it is cleared for takeoff. You might
use discrete-event simulation in which the relevant events include the
approach of a new airplane to the runway and the clearance for takeoff
of an airplane in the queue.

• Suppose you are interested in the trajectory of an airplane as it takes
off. You would probably use time-based simulation because finding the
trajectory involves solving differential equations.

• Suppose you are interested in how long the airplanes wait in the queue but
you want to model the takeoff in some detail instead of using a statistical
distribution to model the length of time that each plane uses the runway.
You might use a combination of time-based simulation and discrete-event
simulation, where the time-based aspect controls details of a plane’s takeoff
and the discrete-event aspect controls the queuing behavior.

1-2



What Is SimEvents?

A detailed description and precise definition of discrete-event simulation are
beyond the scope of this documentation set; for details, see [3] or [7].

Resources for Learning
To help you learn about SimEvents more effectively and efficiently, this
section highlights some learning resources that might be appropriate
for you depending on your background. Some resources are within this
documentation set and others are outside it.

New Discrete-Event Simulation Modelers
If you are new to discrete-event simulation, then one or more of the works
listed in Chapter 6, “Selected Bibliography” can help you learn about the
subject. A detailed treatment of discrete-event systems is beyond the scope of
this documentation set, which aims to explain how to use SimEvents along
with Simulink.

When you are learning how to use SimEvents along with Simulink, you
might be especially interested in the discussions of key concepts and timing
issues, such as:

• “Key SimEvents Concepts” on page 2-34

• “Working with Entities” and “Working with Events” online

• “Working with Signals” online

• “How SimEvents Works” online

New Simulink Users
If you are new to Simulink, then this Getting Started guide and selected
portions of the Simulink documentation can help you learn how to use the
Simulink modeling environment. In addition, see the set of Simulink and
SimEvents demonstrations, which you can access using the Demos tab of
the MATLAB® Help browser.

1-3



1 Introduction

Experienced Simulink Users
If you are accustomed to Simulink features and Simulink timing semantics,
then you should understand how SimEvents and Simulink work together and
how they differ from each other. In particular, see

• “Key SimEvents Concepts” on page 2-34

• “Working with Signals” online

• “Controlling Timing Using Subsystems” online

• “How SimEvents Works” online

Notes on Engineering Subject Matter
This guide expects that you are familar with the engineering subject matter
that you want to address using SimEvents. While this guide might present
examples from subject areas other than your own, you can still use the
examples to learn about SimEvents features.

1-4



Installing SimEvents

Installing SimEvents
To use SimEvents, you must first install all of these products:

• MATLAB

• Simulink

• SimEvents

For instructions, see the MATLAB installation documentation for your
platform.

If you have installed MATLAB and want to check which other MathWorks
products are installed, enter ver in the MATLAB Command Window.

1-5



1 Introduction

What Is an Entity?
Discrete-event simulations typically involve discrete items of interest. By
definition, these items are called entities in SimEvents. Entities can carry
data, known in SimEvents as attributes.

Note Entities are not the same as events. Events are instantaneous discrete
incidents that change a state variable, an output, and/or the occurrence of
other events. See “What Is an Event?” on page 1-7 for details.

Examples of entities in some sample applications are listed in the table below.

Context of Sample Application Entities

Airport with a queue for runway
access

Airplanes waiting for access to
runway

Communication network Packets or messages to be
transmitted

Bank of elevators People traveling in elevators

Conveyor belt for assembling parts Parts being assembled

Computer with one or more CPUs Computational tasks or jobs

A SimEvents model uses blocks to represent components that process entities,
but entities themselves do not have a graphical representation. When you
design and analyze your discrete-event simulation, you might choose to focus
on the entities themselves or on the processes they undergo. For example, you
might pose questions about the average waiting time for a series of entities
entering a queue, or questions about which step in a multistep process (that
entities undergo) is most susceptible to failure.

1-6



What Is an Event?

What Is an Event?
In a discrete-event simulation, an event is an instantaneous discrete incident
that changes a state variable, an output, and/or the occurrence of other
events. Examples of supported events in SimEvents are

• The advancement of an entity from one block to another.

• The completion of service on an entity in a server.

• A zero crossing of a signal connected to a block that is configured to react to
zero crossings. These events are also called trigger edges.

• A function call, which is a discrete invocation request carried from block to
block by a special signal called a function-call signal. Function calls are the
recommended way to make Stateflow® blocks and blocks in the Simulink
libraries respond to asynchronous state changes.

For a full list of supported events and more details on them, see “Working
with Events” online.

Relationships Among Events
Events in a simulation can depend on each other:

• One event might be the sole cause of another event. For example, the
arrival of the first entity in a queue causes the queue length to change
from 0 to 1.

• One event might enable another event to occur, but only under certain
conditions. For example, the completion of service on an entity enables the
entity’s departure from the server, but only if the subsequent block is able
to accept the arrival of that entity. In this case, one event makes another
event possible, but does not solely cause it.

Events that occur at the same value of the simulation clock are called
simultaneous events, even if they are processed sequentially. When
simultaneous events are not causally related to each other, the processing
sequence can significantly affect the simulation behavior. For an example, see
the Event Priorities demo or “Example: Race Conditions at a Switch”. For
more details, see “Processing Sequence for Simultaneous Events” online.

1-7



1 Introduction

Viewing Events
Events do not have a graphical representation. You can infer their occurrence
by observing their consequences, by using the Instantaneous Event Counting
Scope block, or by using the event logging feature. For details, see “Observing
Events” online.

1-8



Running a Demo Simulation

Running a Demo Simulation
One way to become familiar with the basics of SimEvents models and
the way they work is to examine and run a previously built model. This
section describes a demo model that comes with SimEvents. The model
simulates a technique for dynamically adjusting the energy consumption of
a microcontroller based on the workload, without compromising quality of
service. Changes in the workload can occur as discrete events.

Opening the Model
To open this demo, enter DVS_model in the MATLAB Command Window.

1-9



1 Introduction

Alternatively, you can open the MATLAB Help browser and, in the Demos
tab, click the + sign next to Simulink, SimEvents, and Application Demos. In
the expanded list of application demos, double-click the listing for Dynamic
Voltage Scaling Using Online Gradient Estimation.

Examining Entities and Signals in the Model
This section describes the different kinds of ports and lines that appear in the
DVS_model model. Compared to signal ports, entity ports look different and
represent a different concept.

Entity Ports and Connections
Some blocks in this model process entities, which are mentioned in “What
Is an Entity?” on page 1-6.

The FIFO Queue block and the Start Timer block, which are part of
SimEvents, process entities in this model. Each of these blocks has an entity
input port and an entity output port. The figure below shows the entity
output port of the FIFO Queue block and the entity input port of the Start
Timer block.

�����������	������
��	

������
������
��
�

������
�����
��
�

Entity connection lines represent relationships among two blocks (or among
their entity ports) by indicating a path by which an entity can depart from
one block to arrive at another block. The figure above shows the connection
line from the FIFO Queue block’s entity output port to the Start Timer block’s
entity input port. When you run the simulation, any entities that depart from
the FIFO Queue block arrive simultaneously at the Start Timer block.

1-10



Running a Demo Simulation

By convention, entity ports use labels with words in uppercase letters, such
as IN and OUT.

You cannot branch an entity connection line. If your application requires that
an entity arrive at multiple blocks, use the Replicate block to create copies
of the entity.

Signals and Signal Ports
Some blocks in this model process signals. Signals represent numerical
quantities defined at all times during a simulation, not only at a discrete set
of times. Signals are depicted as connection lines between signal ports of
two blocks. The figure below shows that the Start Timer block has not only
an entity output port but also a signal output port. The signal output port
connects to the Random Service Time subsystem.

�����
�����	������
��	

�����

���������
�

�����
���������
�

Key Components of the Model
The DVS_model model uses event-based blocks to simulate the workload of the
microcontroller:

• At random times, the Time-Based Entity Generator block generates an
entity that represents a job for the microcontroller.

• The FIFO Queue block stores jobs that the microcontroller cannot process
immediately.

1-11



1 Introduction

• The Single Server block models the microcontroller’s processing of a job.

This block can process at most one job at a time and thus limits the
availability of the microcontroller to process new jobs. While a job is in this
block, other jobs remain in the FIFO Queue block.

• The Start Timer and Read Timer blocks work together to compute the time
that each job spends in the server. The result of the computation is the et
output signal from the Read Timer block.

• The Entity Sink block absorbs jobs that have completed their processing.

Important discrete events in this model are the generation of a new job and
the completion of a job’s processing.

The model also includes blocks that simulate a dynamic voltage scaling (DVS)
controller that adjusts the input voltage depending on the microcontroller’s
workload. The idea is to minimize the average cost per job, where the cost
takes into account both energy consumption and quality of service. For more
information about the cost and the optimization technique, see “Dynamic
Voltage Scaling Using Online Gradient Estimation” online.

Appearance of Entities
Entities do not appear explicitly in the model window. However, you can
gather information about entities using plots, signals, and the entity logging
feature. See these sections for more information:

• “Example: Synchronizing Service Start Times with the Clock” online

• “Example: Selecting the First Available Server” on page 5-6

• “Plotting the Pending-Entity Signal” on page 2-15, which is part of the
larger example “Building a Simple Discrete-Event Model” on page 2-2

• “Example: Entity Logging” online

1-12



Running a Demo Simulation

Running the Simulation
To run the DVS_model simulation, choose Simulation > Start from the model
window’s menu. A Figure window opens with a dynamic plot showing how
the DVS controller varies the voltage during the simulation to reduce the
average cost per job. A triangle marker moves to indicate the current voltage
and corresponding cost.

1-13



1 Introduction

1-14



2

Building Simple Models
with SimEvents

Building a Simple Discrete-Event
Model (p. 2-2)

Building a model and using the
Simulink and SimEvents block
libraries

Building a Simple Hybrid Model
(p. 2-23)

Building a model that combines
event-based and time-based
components

Key SimEvents Concepts (p. 2-34) Review of key SimEvents concepts
that the preceding examples
illustrate



2 Building Simple Models with SimEvents

Building a Simple Discrete-Event Model
This section describes how to build a new model representing a discrete-event
system. The system is a simple queuing system in which “customers” —
entities — arrive at a fixed deterministic rate, wait in a queue, and advance
to a server that operates at a fixed deterministic rate. This type of system is
known as a D/D/1 queuing system in queuing notation. The notation indicates
a deterministic arrival rate, a deterministic service rate, and a single server.

Using the example model, this section shows you how to

• Perform basic Simulink model-building tasks, such as adding blocks to
models and configuring blocks using their parameter dialog boxes.

• Use plots to understand the behavior of a discrete-event simulation,
including plots that show multiple values at a fixed time.

• Understand the notion of a blocked entity output port in a SimEvents block.

The topics in this section are as follows:

1 “Opening a Model and Libraries” on page 2-2

2 “Moving Blocks into the Model Window” on page 2-6

3 “Configuring Blocks” on page 2-9

4 “Connecting Blocks” on page 2-12

5 “Running the Simulation” on page 2-12

6 “Creating Additional Plots” on page 2-14

7 “Information About Race Conditions and Random Times” on page 2-22

Opening a Model and Libraries
The first steps in building a model are to set up your environment, open a new
model window, and open the libraries containing blocks.

2-2



Building a Simple Discrete-Event Model

Setting Default Parameters for Discrete-Event Simulation
To change the default Simulink model settings to values that are appropriate
for discrete-event simulation modeling, enter this in the MATLAB Command
Window:

simeventsstartup('des');

MATLAB displays a message indicating that it changed default Simulink
settings. The changed settings apply to new models that you create later in
this MATLAB session, but not to previously created models.

Note To install these model settings each time you start MATLAB, invoke
simeventsstartup from your startup.m file.

Opening a New Model Window
Select File > New > Model from the MATLAB window’s menu. This opens
an empty model window, shown below.

2-3



2 Building Simple Models with SimEvents

To name the model and save it as a file, select File > Save from the model
window’s menu. Save the model in your working directory under the filename
myqueuemodel.mdl.

Opening SimEvents Libraries
In the MATLAB Command Window, enter

simeventslib

Alternatively, click the Start button in the lower-left corner of the MATLAB
desktop. In the menu that appears, select Simulink > SimEvents > Block
Library.

The main SimEvents window appears, as shown below. This window contains
an icon for each SimEvents library. To open a library and view the blocks it
contains, double-click the icon that represents that library.

2-4



Building a Simple Discrete-Event Model

Opening Simulink Libraries
In the MATLAB Command Window, enter

simulink

On Windows platforms, this opens the Simulink Library Browser, which uses
a tree structure to display the available libraries and blocks. To view the
blocks in a library listed in the left pane, select the library name and see the
list of blocks in the right pane. The Simulink Library Browser provides access
not only to Simulink but also to SimEvents.

On Unix platforms, the simulink command opens the Simulink library
window, which contains an icon for each Simulink library. To open a library
and view the blocks it contains, double-click the icon that represents that
library.

Simulink Library Browser (Windows Platforms)

2-5



2 Building Simple Models with SimEvents

Simulink Library Window (UNIX Platforms)

Moving Blocks into the Model Window
To move blocks from libraries into the model window, follow these steps:

1 In the main SimEvents window, double-click the Generators icon to open
the Generators library. Then double-click the Entity Generators icon to
open the Entity Generators sublibrary.

2 Drag the Time-Based Entity Generator block from the library into the
model window.

2-6



Building a Simple Discrete-Event Model

This might cause an informational dialog box to open, with a brief
description of the difference between entities and events.

3 In the main SimEvents window, double-click the Queues icon to open the
Queues library.

2-7



2 Building Simple Models with SimEvents

4 Drag the FIFO Queue block from the library into the model window.

5 In the main SimEvents window, double-click the Servers icon to open the
Servers library.

6 Drag the Single Server block from the library into the model window.

7 In the main SimEvents window, double-click the SimEvents Sinks icon to
open the SimEvents Sinks library.

2-8



Building a Simple Discrete-Event Model

8 Drag the Signal Scope block and the Entity Sink block from the library
into the model window.

As a result, the model window looks like the figure below. The model window
contains blocks that represent the key processes in the demo: blocks that
generate entities, store entities in a queue, serve entities, and create a plot
showing relevant data.

Configuring Blocks
Configuring the blocks in myqueuemodel means setting their parameters
appropriately to represent the system being modeled. Each block has a
dialog box that enables you to specify parameters for the block. Default
parameter values might or might not be appropriate, depending on what
you are modeling.

Two important parameters in this D/D/1 queuing system are the arrival rate
and service rate. The reciprocals of these rates are the duration between
successive entities and the duration of service for each entity. To examine
these durations, do the following:

1 Double-click the Time-Based Entity Generator block to open its dialog box.
Observe that the Distribution parameter is set to Constant and that the
Period parameter is set to 1. This means that the block generates a new
entity every second.

2 Double-click the Single Server block to open its dialog box. Observe that
the Service time parameter is set to 1. This means that the server spends
one second processing each entity that arrives at the block.

2-9



2 Building Simple Models with SimEvents

3 Click Cancel in both dialog boxes to dismiss them without changing any
parameters.

The Period and Service time parameters have the same value, which
means that the server completes an entity’s service at exactly the same time
that a new entity is being created. The Event Priorities demo discusses this
simultaneity in more detail.

For now, configure blocks to create a plot that shows when each entity departs
from the server, and to make the queue have an infinite capacity. Do this as
follows:

1 Double-click the Single Server block to open its dialog box.

2 Click the Statistics tab to view parameters related to the statistical
reporting of the block.

3 Set the Number of entities departed parameter to On.

2-10



Building a Simple Discrete-Event Model

Then click OK. The Single Server block acquires a signal output port
labeled #d. During the simulation, the block will produce an output signal
at this #d port; the signal’s value is the running count of entities that have
completed their service and departed from the server.

4 Double-click the FIFO Queue block to open its dialog box.

5 Set the Capacity parameter to Inf and click OK.

2-11



2 Building Simple Models with SimEvents

Connecting Blocks
Now that the model window for myqueuemodel contains blocks that represent
the key processes, connect the blocks to indicate relationships among them as
shown in the figure below. To connect blocks with the mouse, drag from the
output port of one block to the input port of another block.

Running the Simulation
Save your model. Then start the simulation by choosing Simulation > Start
from the model window’s menu.

Suppressing Solver Warnings
If you skipped “Setting Default Parameters for Discrete-Event Simulation” on
page 2-3, then you might see warning messages in the MATLAB Command
Window about continuous states and the maximum step size. These
messages appear because certain default parameters for a Simulink model
are inappropriate for this particular example model. Simulink overrides the
inappropriate parameters and alerts you to that fact.

One way to suppress the warning messages when you run this simulation in
the future is to enter this command in the MATLAB Command Window:

simeventsconfig('myqueuemodel','des');

MATLAB displays a message indicating that it changed the Simulink settings
for this particular model.

2-12



Building a Simple Discrete-Event Model

Results of the Simulation
When the simulation runs, the Signal Scope block opens a window containing
a plot. The horizontal axis represents the times at which entities depart from
the server, while the vertical axis represents the total number of entities
that have departed from the server.

After an entity departs from the Single Server block, the block updates its
output signal at the #d port. The updated values are reflected in the plot
and highlighted with plotting markers. From the plot, you can make these
observations:

• Until T=1, no entities depart from the server. This is because it takes one
second for the server to process the first entity.

• Starting at T=1, the plot is a stairstep plot. The stairs have height 1
because the server processes one entity at a time, so entities depart one at
a time. The stairs have width equal to the constant service time, which is
one second.

One fact not revealed by the plot is that when the simulation ends, one entity
is still in the server. This entity is not included in the #d signal because the
entity has not departed from the server. To see whether an entity remains in
the server when the simulation ends, set the Single Server block’s Number of
entities in block parameter to On to obtain a #n signal output port, connect
the port to a Signal Scope block, and set the scope block’s X value from
parameter to Index. In the resulting plot, the last value plotted is 1, not 0.

2-13



2 Building Simple Models with SimEvents

Creating Additional Plots
The myqueuemodel model that you created in the previous sections plots the
number of entities that depart from the server. This section modifies the
model to plot other quantities that can reveal aspects of the simulation. The
topics are as follows:

• “Enabling the Pending-Entity Signal” on page 2-14

• “Plotting the Pending-Entity Signal” on page 2-15

• “Simulating with Different Intergeneration Times” on page 2-15

• “Viewing Waiting Times and Utilization” on page 2-17

• “Observations from Plots” on page 2-19

Enabling the Pending-Entity Signal
When at least one entity is in the FIFO Queue block but is unable to depart
and advance to the subsequent block, the FIFO Queue block’s entity output
port (labeled OUT) is said to be blocked and the entity at the head of the
queue is said to be a pending entity. The FIFO Queue block can report
whether it has a pending entity using a signal whose value is 1 if an entity is
pending and 0 if no entity is pending or a previously pending entity has just
departed. Note that a value of 0 could mean either that the queue is empty
or that an entity trying to depart is successful. To configure the FIFO Queue
block to report pending-entity status, do the following:

1 Double-click the FIFO Queue block to open its dialog box. Click the
Statistics tab to view parameters related to the statistical reporting of
the block.

2 Set the Status of pending entity departure parameter to On and
click OK. This causes the block to have a signal output port for the
pending-entity signal. The port label is pe.

2-14



Building a Simple Discrete-Event Model

Plotting the Pending-Entity Signal
The model already contains a Signal Scope block for plotting the entity count
signal. To add another Signal Scope block for plotting the pending-entity
signal (enabled above), follow these steps:

1 In the main SimEvents window, double-click the SimEvents Sinks icon to
open the SimEvents Sinks library.

2 Drag the Signal Scope block from the library into the model window.
Simulink gives it a unique block name, Signal Scope1, to avoid a conflict
with the existing Signal Scope block in the model.

3 Connect the pe signal output port of the FIFO Queue block to the in signal
input port of the Signal Scope1 block by dragging the mouse pointer from
one port to the other. The model now looks like the figure below.

Simulating with Different Intergeneration Times
By changing the intergeneration time (that is, the reciprocal of the entity
arrival rate) in the Time-Based Entity Generator block, you can see how the
queue’s entity output port becomes blocked and unblocked. Try this procedure:

1 Double-click the Time-Based Entity Generator block to open its dialog box,
set the Period parameter to 0.85, and click OK. This causes entities to
arrive somewhat faster than the Single Server block can process them. As
a result, the queue is not always empty.

2 Save and run the simulation. The plot whose title bar is labeled Signal
Scope1 represents the pending-entity signal, where a value of 1 means
true and a value of 0 means false. The figure below explains some of the

2-15



2 Building Simple Models with SimEvents

points on the plot. The vertical range on the plot has been modified to fit
the data better.

0 2 4 6 8 10
0

0.5

1

Does Queue Have a Pending Entity?

Time

P
en

di
ng

 E
nt

ity

��
���	�������	��
��
�
�����	�	
���	����	
�
������

�����

��������

��	�
���������
�����	�	

��������	��
��
�
�����	�	�������
�	���	��	����

��	�	�������	��
��
�
�����	�	�������
��	�������	���	
	����

�	��������	�����	�
�����	�	��
	
����
	�����	��
�

3 Reopen the Time-Based Entity Generator block’s dialog box and set Period
to 0.3.

4 Run the simulation again. Now the entities arrive much faster than the
server can process them. The pending-entity signal is true nearly all the
time because the queue nearly always has at least one entity that is trying
and failing to advance to the server. However, the pending-entity signal
is false at the beginning of the simulation. The pending-entity signal is
also false at time instants when an entity in the queue is able to advance
to the server; these values of false change back to true when the queue
determines that it still has an entity that cannot depart.

2-16



Building a Simple Discrete-Event Model

5 Reopen the Time-Based Entity Generator block’s dialog box and set Period
to 1.1.

6 Run the simulation again. Now the entities arrive slower than the server’s
service rate, so entities never stay in the queue for a positive amount of
time. The pending-entity signal is always false because every entity that
arrives at the queue is able to depart immediately.

Viewing Waiting Times and Utilization
The pending-entity signal shown above is an example of a statistic that
quantifies a state at a particular instant. Other statistics, such as average
waiting time and server utilization, summarize behavior between T=0 and
the current time. To modify the model so that you can view entities’ average
waiting time in the queue and server, as well as the proportion of time that
the server spends storing an entity, use the following procedure:

1 Double-click the FIFO Queue block to open its dialog box. Click the
Statistics tab, set the Average wait parameter to On, and click OK. This
causes the block to have a signal output port for the signal representing the
average duration that entities wait in the queue. The port label is w.

2 Double-click the Single Server block to open its dialog box. Click the
Statistics tab, set both the Average wait and Utilization parameters to
On, and click OK. This causes the block to have a signal output port labeled
w for the signal representing the average duration that entities wait in the
server, and a signal output port labeled util for the signal representing the
proportion of time that the server spends storing an entity.

2-17



2 Building Simple Models with SimEvents

3 Copy the Signal Scope1 block and paste it into the model window.

Note If you modified the plot corresponding to the Signal Scope1 block,
then one or more parameters in its dialog box might be different from the
default values. Copying a block also copies parameter values.

4 Double-click the new copy to open its dialog box.

5 Set Plot type to Continuous and click OK. For summary statistics like
average waiting time and utilization, a continuous-style plot is more
appropriate than a stairstep plot. Note that the Continuous option refers
to the appearance of the plot and does not change the signal itself to make
it continuous-time.

6 Copy the Signal Scope2 block that you just modified and paste it into the
model window twice. You now have five scope blocks.

Simulink gives each copy a unique name. If you want to make the model
and plots easier to read, you can click the names underneath each scope
block and rename the block to use a descriptive name like Queue Waiting
Time, for example.

7 Connect the util signal output port and the two w signal output ports to
the in signal input ports of the unconnected scope blocks by dragging the
mouse pointer from port to port. The model now looks like the figure below.

2-18



Building a Simple Discrete-Event Model

8 Save the simulation and run it with different values of the Period
parameter in the Time-Based Entity Generator block, as described in
“Simulating with Different Intergeneration Times” on page 2-15. Look at
the plots to see how they change if you set the intergeneration time to 0.3
or 1.1, for example.

Observations from Plots

• The average waiting time in the server does not change after the first
departure from the server because the service time is fixed for all departed

2-19



2 Building Simple Models with SimEvents

entities. The average waiting time statistic does not include partial waiting
times for entities that are in the server but have not yet departed.

• The utilization of the server is nondecreasing if the intergeneration time is
small (such as 0.3) because the server is constantly busy once it receives
the first entity.

The utilization might decrease if the intergeneration time is larger than
the service time (such as 1.5) because the server has idle periods between
entities.

2-20



Building a Simple Discrete-Event Model

• The average waiting time in the queue increases throughout the simulation
if the intergeneration time is small (such as 0.3) because the queue gets
longer and longer.

The average waiting time in the queue is zero if the intergeneration time is
larger than the service time (such as 1.1) because every entity that arrives
at the queue is able to depart immediately.

2-21



2 Building Simple Models with SimEvents

Information About Race Conditions and Random
Times
Other examples modify this one by varying the processing sequence for
simultaneous events or by making the intergeneration times and/or service
times random. The modified examples are

• “Example: Using Random Intergeneration Times in a Queuing System”
on page 3-5

• “Example: Using Random Service Times in a Queuing System” on page 4-7

• Event Priorities demo

2-22



Building a Simple Hybrid Model

Building a Simple Hybrid Model
This section describes how to modify a time-based model by adding some
discrete-event behavior. The original demo is a model of a flight controller in
an aircraft. The modifications are a first step toward simulating a remote
flight controller for the same aircraft. The aircraft dynamics are unchanged,
but the controller and the aircraft (plant) are separated. A simple way to
model a separation is a time delay, which is what this example does. A
variation on the example also complicates the interaction between controller
and aircraft by modeling occasional transmission failures.

Using the example model, this section shows you how to

• Attach data from time-based dynamics to entities whose timing is
independent of the time-based dynamics

• Use an entity’s departure event to cause the update of a signal that
influences time-based dynamics

• Create a simple model of a hybrid system and then vary it to explore other
behaviors

The topics in this section are as follows:

• “Opening a Time-Based Simulink Demo” on page 2-23

• “Adding Event-Based Behavior” on page 2-24

• “Running the Hybrid F-14 Simulation” on page 2-27

• “Visualizing the Sampling and Latency” on page 2-28

• “Modifying the Model to Drop Some Messages” on page 2-30

Opening a Time-Based Simulink Demo
To open the Simulink F-14 demo, enter

sldemo_f14

in the MATLAB Command Window. The model simulates the pilot’s stick
input with a square wave. The system outputs are the aircraft angle of attack
and the G forces experienced by the pilot. A model scope displays the input
and output signals. The Controller block connects to other components in the

2-23



2 Building Simple Models with SimEvents

model, namely, the stick input, the q and σ signals from the aircraft dynamics
model, and the actuator model.

Run the simulation by choosing Simulation > Start from the model window’s
menu. You can view the results graphically in the model scope.

Adding Event-Based Behavior
This section modifies the sldemo_f14 model by inserting several SimEvents
blocks between the Controller and Actuator Model blocks. The result looks
like the following figures, where the SimEvents blocks are contained in a
subsystem for visual neatness.

Part of Top Level of Modified Model

Subsystem Contents

2-24



Building a Simple Hybrid Model

The following topics describe the subsystem and then provide instructions
for building it yourself:

• “Behavior of the Subsystem” on page 2-25

• “How to Build the Subsystem” on page 2-26

Behavior of the Subsystem
The SimEvents blocks are an abstract representation of a simple
communication link that samples the information from the remote controller
and conveys that information to the aircraft:

• Data from the controller is related to the subsystem via the subsystem’s
In1 block.

• Periodically, the Event-Based Entity Generator block creates an entity,
which serves as a vehicle for the data in this communication system
between the controller and the aircraft.

• The Set Attribute block attaches the data to the entity.

• The Infinite Server block models the latency in the communication system
by delaying each data-containing entity.

• The Get Attribute block models the reconstruction of data at the receiver.
This block connects to the subsystem’s Out1 block so that the actuator
block at the top level of the model can access the data.

• The Entity Sink block absorbs entities after they are no longer needed.

Note This subsystem models communication from the controller to the
actuator, but does not address the feedback path from the aircraft back to the
controller. As stated earlier, this model is merely a first step toward modeling
a remote controller. Next steps might involve modeling the communication in
the feedback path and replacing the Infinite Server block with a more realistic
representation of the communication link.

2-25



2 Building Simple Models with SimEvents

How to Build the Subsystem
To modify the sldemo_f14 model to create this example, follow these steps:

1 Open Simulink and SimEvents, referring to instructions in “Opening a
Model and Libraries” on page 2-2 if you are new to Simulink. Also, open
the sldemo_f14 model by entering its name in the MATLAB Command
Window if you have not already done so.

2 Use File > Save As in the model window to save the model to your working
directory as sldemo_f14_remote.mdl.

3 Enter simeventsconfig('sldemo_f14_remote','hybrid') in the
MATLAB Command Window to make some model settings more
appropriate for a simulation that includes discrete-event behavior.

4 From the Simulink Ports & Subsystems library, drag the Subsystem block
into the model window and insert it between the Controller and Actuator
Model blocks. The model window should look like Part of Top Level of
Modified Model on page 2-24.

5 Double-click the newly inserted Subsystem block to open a subsystem
window. The rest of this procedure builds the subsystem in this window.

6 From the Sources library of Simulink, drag the Digital Clock block into
the subsystem window.

7 Double-click the Digital Clock block to open its dialog box, set Sample
time to 0.1, and click OK.

8 From the Entity Generators sublibrary of the Generators library, drag the
Event-Based Entity Generator block into the subsystem window.

9 Double-click the Event-Based Entity Generator block to open its dialog
box, set Generate entities upon to Sample time hit from port ts,
and click OK.

10 From the Signal Generators sublibrary of the Generators library, drag the
Event-Based Random Number block into the subsystem window.

2-26



Building a Simple Hybrid Model

11 Double-click the Event-Based Random Number block to open its dialog
box. Set Distribution to Uniform, set Minimum to 0.01, set Maximum
to 0.06, and click OK.

12 From the Attributes library, drag the Set Attribute and Get Attribute
blocks into the subsystem window.

13 Double-click the Set Attribute block to open its dialog box. On the A1 tab,
set Attribute assignment to From signal port A1, set Attribute name
to Data, and click OK. The block acquires a signal output port labeled A1.

14 Double-click the Get Attribute block to open its dialog box. On the A1 tab,
set Send attribute value to signal port A1 to On, set Attribute name
to Data, and click OK. The block acquires a signal input port labeled A1.

15 From the SimEvents Servers library, drag the Infinite Server block into
the subsystem window.

16 Double-click the Infinite Server block to open its dialog box. Set Service
time from to Signal port t and click OK. The block acquires a signal
input port labeled t.

17 From the SimEvents Sinks library, drag the Entity Sink block into the
subsystem window.

18 Connect the blocks as shown in Subsystem Contents on page 2-24.

19 Save the model to preserve your modifications.

Running the Hybrid F-14 Simulation
Run the sldemo_f14_remote simulation by choosing Simulation > Start
from the model window’s menu. By comparing the plots in the model scope
with the plots in the original time-based sldemo_f14 model, you can see how
the discrete-event behavior affects the simulation. The latency in the control
loop (that is, the delay between the controller and the actuator) degrades the
behavior somewhat.

2-27



2 Building Simple Models with SimEvents

Changing the Latency
One way to experiment with the simulation is to change the latency in the
control loop (that is, the delay between the controller and the actuator) and
run the simulation again. Here are some ideas:

• In the Event-Based Random Number block, set Maximum to 0.1.

• In the Event-Based Random Number block, set Distribution to Beta, set
Minimum to 0.01, and set Maximum to 0.06.

• Replace the Event-Based Random Number block with a Repeating
Sequence Stair block from the Simulink Sources library. In the latter
block’s dialog box, set Vector of output values to [0.03; 0.07] and
set Sample time to 1.

Visualizing the Sampling and Latency
By sending relevant data from sldemo_f14_remote to the MATLAB
workspace and examining it after the simulation, you can determine when
Simulink updates signals during the simulation. In particular, you can
confirm that the data sent from the controller to the actuator is, in fact,
delayed.

To send the controller’s output and actuator’s input to the MATLAB
workspace and compare the signals after the simulation, follow these steps:

1 From the Simulink Sinks library, drag two copies of the To Workspace
block into the model window.

2 Double-click one To Workspace block to open its dialog box, set Variable
name to tx, set Save format to Structure With Time, and click OK.

3 Double-click the other To Workspace block to open its dialog box, set
Variable name to rx, set Save format to Structure With Time, and
click OK.

2-28



Building a Simple Hybrid Model

4 Connect the To Workspace blocks to the input and output signals to the
discrete event subsystem using branch lines, as shown below.

5 Run the simulation.

6 Enter the following in the MATLAB Command Window:

n = 100; % Plot first 100 values
plot(tx.time(1:n), tx.signals.values(1:n),'b.-',...

rx.time(1:n), rx.signals.values(1:n),'rx-');
legend('Transmitted','Received')

2-29



2 Building Simple Models with SimEvents

The resulting plot, shown below, exhibits the data sampling and the delay in
the discrete event subsystem. The data transmitted by the controller appears
with blue dots, while the data received at the actuator appears with red x’s.
Notice that the data transmitted at T=0.1 is received slightly later and then
held constant until the data transmitted at T=0.2 is received. The time points
0.1, 0.2, 0.3, etc., are significant because the subsystem generates an entity at
exactly these times and it is the entities that carry data from the controller
to the actuator.

Modifying the Model to Drop Some Messages
You can vary the implementation of the sldemo_f14_remote model’s
remote communication from the controller to the actuator by having the
communication link drop messages with small probability. When a message is
dropped, the actuator continues to use the last received message, until the
next time it gets an updated message.

2-30



Building a Simple Hybrid Model

The modified portion of the subsystem looks like the figure below.

Subsystem Modified to Drop Some Messages

The following topics describe the subsystem modifications and then provide
instructions for building them yourself:

• “Behavior of the Modified Subsystem” on page 2-31

• “How to Modify the Subsystem” on page 2-32

Behavior of the Modified Subsystem
In the original subsystem, every entity (with data attached to it) reaches the
Get Attribute block, which sends the data out of the subsystem and to the
actuator. In the modified subsystem,

• The Set Attribute block assigns not only the Data attribute but also a new
DropMessage attribute. The value of the DropMessage attribute is 1 with
probability 0.95 and 2 with probability 0.05. The values 1 and 2 refer to the
entity output ports on the Output Switch block.

• Entities advance to either the Get Attribute block or a new Entity Sink
block. The Output Switch block uses the DropMessage attribute of each
entity to determine which path that entity takes. Because of the probability
distribution, 95% of entities advance to the Get Attribute block and the
remaining 5% of entities are simply absorbed by the Entity Sink block.

2-31



2 Building Simple Models with SimEvents

• When an entity reaches the Get Attribute block, the attached data
successfully reaches the actuator. When an entity uses the other path, the
attached data is discarded and the actuator continues to see the data that
it received from the last entity that reached the Get Attribute block.

The reason the actuator continues to see previous data is that Simulink holds
a signal’s value until instructed to update it. When an entity is absorbed
without reaching the Get Attribute block, the block does not update the signal
that goes to the subsystem’s Out1 block. Therefore, the value of that signal is
whatever value was attached to the last entity that reached the Get Attribute
block during the simulation.

The same reasoning explains why the actuator sees a constant signal
between successive entities, that is, between successive samples by the
communication link. Although the controller issues a continuous-time signal,
the communication link between the controller and actuator creates a new
data-carrying entity according to a discrete-time schedule. In other words,
the subsystem samples the data from the controller before transmitting it
to the actuator.

How to Modify the Subsystem
To modify the subsystem in the sldemo_f14_remote model to create this
variation, follow these steps:

1 From the SimEvents Routing library, drag the Output Switch block into
the subsystem window.

2 Double-click the Output Switch block to open its dialog box. Set Number
of entity output ports to 2, set Switching criterion to From attribute,
set Attribute name to DropMessage, and click OK. The block retains two
entity output ports, labeled OUT1 and OUT2.

3 Create copies of the Event-Based Random Number and Entity Sink blocks,
which are already in the subsystem. You can create a copy by dragging
the block with the right mouse button, or by using Edit > Copy followed
by Edit > Paste.

4 Double-click the Event-Based Random Number block to open its dialog box.
Set Distribution to Arbitrary discrete, set Value vector to [1 2], set
Probability vector to [0.95 0.05], set Initial seed to an odd 5-digit

2-32



Building a Simple Hybrid Model

number different from the one used in the other instance of this block,
and click OK.

5 Double-click the Set Attribute block to open its dialog box. On the A2
tab, set Attribute assignment to From signal port A2, set Attribute
name to DropMessage, and click OK. The block acquires a signal output
port labeled A2.

6 Delete the connection between the Infinite Server and Get Attribute blocks.

7 Connect the blocks as shown in Subsystem Modified to Drop Some
Messages on page 2-31.

8 Use File > Save As in the model window to save the model to your working
directory as f14_remote_drop.mdl.

2-33



2 Building Simple Models with SimEvents

Key SimEvents Concepts
The examples in this chapter illustrate various concepts that are important to
the way SimEvents works. This section reviews and reinforces those concepts.
The topics are

• “Meaning of Entities in Different Applications” on page 2-34

• “Entity Ports and Paths” on page 2-34

• “Data and Signals” on page 2-35

Meaning of Entities in Different Applications
An entity represents an item of interest in a discrete-event simulation. The
meaning of an entity depends on what you are modeling. In this chapter,
examples use entities to represent abstract customers in a queuing system
and instructions from a remote controller to an actuator on the system being
controlled.

Entities do not have a graphical depiction in the model window the way
blocks, ports, and connection lines do.

Entity Ports and Paths
An entity that departs from a block does so via an entity output port. An
entity that arrives at a block does so via an entity input port.

A connection line indicates a path along which an entity can potentially
advance. However, the connection line does not imply that any entities
actually advance along that path during a simulation. For a given entity
path and a given time instant during the simulation, any of the following
could be true:

• No entity is trying to advance along that path.

• An entity is trying and failing to advance along that path. For some
blocks, it is normal for an entity input port to be unavailable under certain
conditions. This unavailability causes an entity to fail in its attempt to
advance along that path, even though the path is intact (that is, even
though the ports are connected). An entity that tries and fails to advance
is called a pending entity.

2-34



Key SimEvents Concepts

• An entity successfully advances along that path. This occurs only at a
discrete set of times during a simulation.

Note The simulation could also have one or more times at which one or more
entities successfully advance along a given entity path and, simultaneously,
one or more different entities try and fail to advance along that same entity
path. For example, an entity departs from a queue and, simultaneously, the
next entity in the queue tries and fails to depart.

Data and Signals
In time-based dynamics, signals express the outputs of dynamic systems
represented by blocks. Event-based blocks can also read and produce signals.
One way to learn about signals is to plot them; the discussion in “Creating
Additional Plots” on page 2-14 is about visualizing signals that reflect
behavior of event-based blocks.

Time-based and event-based dynamics can interact via the data shared by
both types of blocks. Attributes of entities provide a way for entities to carry
data with them. The subsystem in “Adding Event-Based Behavior” on page
2-24 illustrates the use of attributes in the interaction between time-based
and event-based dynamics.

Although signals are common to both time-based and event-based dynamics,
event-based dynamics can produce signals that have slightly different
characteristics. For more information, see “Working with Signals” online.

2-35



2 Building Simple Models with SimEvents

2-36



3

Creating Entities Using
Intergeneration Times

Role of Entities in SimEvents Models
(p. 3-2)

How entities fit into the modeling
process

Introduction to the Time-Based
Entity Generator (p. 3-3)

Capabilities of the Time-Based
Entity Generator block

Specifying the Distribution of
Intergeneration Times (p. 3-4)

Selecting a distribution from the
dialog box

Using Intergeneration Times from a
Signal (p. 3-6)

Reading intergeneration times from
a signal

Using Generation Times from a
Vector (p. 3-11)

Generating entities at explicit values
of time



3 Creating Entities Using Intergeneration Times

Role of Entities in SimEvents Models
As described in “What Is an Entity?” on page 1-6, entities are discrete items
of interest in a discrete-event simulation. You determine what an entity
signifies, based on what you are modeling.

Data and Entities
You can optionally attach data to entities. Such data is stored in one or
more attributes of an entity. You define names and numeric scalar values for
attributes. For example, if your entities represent a message that you are
transmitting across a communication network, you might assign data called
length that indicates the length of each particular message. You can read or
change the values of attributes during the simulation.

Creating Entities in a Model
SimEvents models typically contain at least one source block that generates
entities. Other SimEvents blocks in the model process the entities that
the source block generates. One source block that generates entities is
the Time-Based Entity Generator block, described in “Introduction to the
Time-Based Entity Generator” on page 3-3.

Varying the Interpretation of Entities
A single model can use entities to represent different kinds of items. For
example, if you are modeling a factory that processes two different kinds
of parts, then you can

• Use two Time-Based Entity Generator blocks to create the two kinds of
parts.

• Use one Time-Based Entity Generator block and subsequently assign an
attribute to indicate what kind of part each entity represents.

3-2



Introduction to the Time-Based Entity Generator

Introduction to the Time-Based Entity Generator
The Time-Based Entity Generator block creates entities. You configure the
Time-Based Entity Generator block to customize aspects such as

• The intergeneration times between successive entities. The sections below
discuss ways of doing this.

• How the block reacts when it is temporarily unable to output entities. To
learn more, see the block’s online reference page.

• The relative priority of entity generation events compared to other kinds
of events that might occur simultaneously. To learn more, see “Processing
Sequence for Simultaneous Events” online.

Accessing the Time-Based Entity Generator
The Time-Based Entity Generator block resides in the Entity Generators
sublibrary of the Generators library of SimEvents.

3-3



3 Creating Entities Using Intergeneration Times

Specifying the Distribution of Intergeneration Times
The intergeneration time is the time interval between successive entities that
a Time-Based Entity Generator block generates. You can use the block’s dialog
box to describe a statistical distribution that governs the intergeneration
times. Use this procedure:

1 Set Generate entities with to Intergeneration time from dialog.

2 Choose a statistical distribution by setting the Distribution parameter to
one of these values:

• Constant. Then set the Period parameter to the constant
intergeneration time.

Note If potential roundoff errors in entity generation times are a
concern in your model, then consider using the Event-Based Entity
Generator block instead. Set the block’s Generate entities upon
parameter to Sample time hit from port ts and connect an input
signal whose sample time is the desired constant intergeneration time.
See “Detecting Sample Time Hits” online for details.

• Uniform. Then set the Minimum and Maximum parameters to define
the interval over which the distribution is uniform. The uniform
distribution has probability density function

f x
x

( ) = −
< <⎧

⎨
⎪

⎩⎪

1
Maximum Minimum

Minimum Maximum

0 Otherwise

• Exponential. Then set the Mean parameter to the mean of the
exponential distribution. The exponential distribution with mean 1/λ
has probability density function

f x
x x

xλ

λ λ
( )

exp
=

−( ) ≥
<

⎧
⎨
⎩ 0

0
0

3-4



Specifying the Distribution of Intergeneration Times

The random distributions also provide an Initial seed parameter that
specifies the seed on which the stream of random numbers is based. Typically,
you would use a large (for example, five-digit) odd number. For a fixed seed,
the random behavior is repeatable the next time you run the simulation.
Changing the seed changes the stream of random numbers.

Example: Using Random Intergeneration Times in
a Queuing System
Open the model that you created in “Building a Simple Discrete-Event
Model” on page 2-2. By examining the Time-Based Entity Generator
block’s Distribution and Period parameters, you can see that the block
is configured to use a constant intergeneration time of 1 second. To use a
random intergeneration time instead, try these variations and see how they
affect the plot that the simulation creates:

• Set Distribution to Uniform, set Minimum to 1, and set Maximum to
3. The first entity, generated at T=0, appears in the plot at T=1 after its
service is complete. The second entity, generated at a random time between
T=1 and T=3, appears in the plot between T=2 and T=4.

• Set Distribution to Uniform, set Minimum to 1, and set Maximum to
1.5. The plot probably shows more entities compared to the scenario above
because the range of intergeneration times has the same minimum but
a smaller maximum.

• Set Distribution to Exponential and set Mean to 0.5. This system is
called an M/D/1 queuing system, where the M stands for Markovian and
indicates a Poisson arrival rate. Note that the exponential distribution
has no upper bound, so the time between successive entities could be any
positive number.

3-5



3 Creating Entities Using Intergeneration Times

Using Intergeneration Times from a Signal
To indicate intergeneration times explicitly as values from a signal, use this
procedure:

1 Set the Time-Based Entity Generator block’s Generate entities with
parameter to Intergeneration time from port t. A signal input port
labeled t appears on the block.

2 Create a signal whose value at each generation time is the time until the
next entity generation.

For examples of how to create such signals, see

• “Example: Using a Step Function as Intergeneration Time” on page 3-7

• “Example: Using an Arbitrary Discrete Distribution as Intergeneration
Time” on page 3-9.

3 Connect the signal to the signal input port labeled t.

Upon generating each entity, the Time-Based Entity Generator block reads
the value of the input signal and uses that value as the time interval until
the next entity generation.

Using intergeneration times from a signal might be appropriate if you

• Want to use a statistical distribution that is not directly accessible using
the Intergeneration time from dialog option, described in “Specifying
the Distribution of Intergeneration Times” on page 3-4.

• Want the intergeneration time to depend on the dynamics of other blocks in
your model.

• Have a set of intergeneration times in a MATLAB workspace variable or in
a MAT-file.

3-6



Using Intergeneration Times from a Signal

Note The block reads the input signal upon each entity generation, not upon
each simulation sample time, so signal values that occur between successive
entity generation events have no effect on the entity generation process. For
example, if the input signal is 10 when the simulation starts, 1 at T=1, and
10 from T=9 until the simulation ends, then the value of 1 never becomes an
intergeneration time.

Example: Using a Step Function as Intergeneration
Time
Open the model that you created in “Building a Simple Discrete-Event
Model” on page 2-2. To specify intergeneration times using a signal, use this
procedure:

1 Set the Time-Based Entity Generator block’s Generate entities with
parameter to Intergeneration time from port t. A signal input port
labeled t appears on the block.

2 From the Simulink Sources library, drag a Step block into the model and
connect it to the t input port of the Time-Based Entity Generator block.
The model looks like the figure below.

3 Set the Step block’s Step time parameter to 2.8, Initial value parameter
to 1, and Final value parameter to 2. With these parameters, the block
generates a signal whose value is 1 from T=0 to T=2.8, and whose value
is 2 thereafter.

3-7



3 Creating Entities Using Intergeneration Times

4 Run the simulation. You can see from the plot that the entities departing
from the server are initially spaced 1 second apart and later spaced 2
seconds apart.

The Time-Based Entity Generator block reads intergeneration times from
the Step block each time it generates an entity. The table below shows
when the Time-Based Entity Generator block generates entities and which
intergeneration time values it reads in each instance. The table also shows
when each entity departs from the server, which you can see from the
plot. Although the Step block starts producing the value of 2 at T=2.8, the
Time-Based Entity Generator block does not read the new value until the next
time it generates an entity, at T=3.

Entity Generation
Time

Intergeneration Time
Until Next Entity
Generation

Departure Time of
Entity from Server

0 1 1

1 1 2

2 1 3

3 2 4

5 2 6

7 2 8

9 2 10

3-8



Using Intergeneration Times from a Signal

Example: Using an Arbitrary Discrete Distribution
as Intergeneration Time
Open the model that you created in “Building a Simple Discrete-Event
Model” on page 2-2. To specify intergeneration times using a signal, use this
procedure:

1 Set the Time-Based Entity Generator block’s Generate entities with
parameter to Intergeneration time from port t. A signal input port
labeled t appears on the block.

2 From the Signal Generators sublibrary of the Generators library, drag the
Event-Based Random Number block into the model and connect it to the
t input port of the Time-Based Entity Generator block. The model looks
like the figure below.

3 Set the Event-Based Random Number block’s Distribution parameter
to Arbitrary discrete, Value vector parameter to [1 1.5 2], and
Probability vector parameter to [0.25 0.5 0.25]. With these
parameters, the block generates intergeneration times �t such that

P t
P t
P t

( ) .
( . ) .
( ) .

∆
∆
∆

= =
= =
= =

1 0 25
1 5 0 5
2 0 25

4 Run the simulation. You can see from the plot that the entities departing
from the server are spaced 1, 1.5, or 2 seconds apart. The simulation
time in this example is much too short to verify that the random number
generator is applying the specified probabilities, however.

3-9



3 Creating Entities Using Intergeneration Times

3-10



Using Generation Times from a Vector

Using Generation Times from a Vector
If you have an explicit list of unique times at which you want to generate
entities, you can configure the Time-Based Entity Generator block so that it
generates entities at these times. To do this, create a vector of intergeneration
times. Intergeneration times are the differences between pairs of successive
time values in your list.

These topics provide instructions and motivation:

• “Configuring the Block to Generate Entities at Specified Times” on page
3-11

• “Sample Use Cases” on page 3-13

Configuring the Block to Generate Entities at
Specified Times
To generate entities at specified times, follow this procedure:

1 Set the Time-Based Entity Generator block’s Generate entities with
parameter to Intergeneration time from port t. A signal input port
labeled t appears on the block.

2 Depending on whether you want to generate an entity at T=0, either
select or clear the Generate entity at simulation start option in the
Time-Based Entity Generator block.

3 Create a column vector, gentimes, that lists 0 followed by the nonzero
times at which you want to create entities, in strictly ascending sequence.
You can create this vector by entering the definition in the MATLAB
Command Window, by loading a MAT-file that you previously created, or by
manipulating a variable that a To Workspace or Discrete Event Signal to
Workspace block previously created.

An example of a column vector listing generation times is below.

gentimes = [0; 0.9; 1.7; 3.8; 3.9; 6];

3-11



3 Creating Entities Using Intergeneration Times

4 Apply the diff function to the vector of generation times, thus creating
a vector of intergeneration times.

intergentimes = diff(gentimes);

5 Create a matrix suitable for the From Workspace block. This is a
two-column matrix whose first column contains time values and whose
second column contains intergeneration times until the next entity
generation. Remember that the vector of intergeneration times is shorter
than the vector of generation times by one element because of the diff
operation; this is why the definition of the matrix below ignores the last
entry in the vector of generation times.

from_workspace_matrix = [gentimes(1:end-1), intergentimes];

6 Insert a From Workspace block in the model and connect it to the t input
port of the Time-Based Entity Generator block.

7 In the dialog box of the From Workspace block, set Data to
from_workspace_matrix.

Note If your maximum generation time is smaller than the stop time of
the simulation, consider setting the Form output after final data value
by parameter to Holding final value. This makes the entity generation
process periodic after the simulation reaches the maximum generation
time.

3-12



Using Generation Times from a Vector

Sample Use Cases
Using explicit entity-generation times might be appropriate if you want to

• Recreate an earlier simulation whose intergeneration times you saved
using a To Workspace block.

• Study your model’s behavior under unusual circumstances and have
created a series of entity generation times that you expect to produce
unusual circumstances.

• Verify simulation behavior observed elsewhere, such as a result reported in
a paper.

3-13



3 Creating Entities Using Intergeneration Times

3-14



4

Basic Queues and Servers

Role of Queues in SimEvents Models
(p. 4-2)

What queues represent in various
application types

Role of Servers in SimEvents Models
(p. 4-4)

What servers represent in various
application types

Using FIFO Queue and Single
Server Blocks (p. 4-6)

Examples using the library blocks



4 Basic Queues and Servers

Role of Queues in SimEvents Models
In a discrete-event simulation, a queue stores entities for some length of time
that cannot be determined in advance. The queue attempts to output entities
as soon as it can, but its success depends on whether the next block accepts
new entities. An everyday example of a queue is a situation where you stand
in a line with other people to wait for someone (a bank teller, a retail cashier,
etc.) to address your needs and you cannot determine in advance how long
you must wait.

Distinguishing features of different queues include

• The queue capacity, which is the number of entities the queue can store
simultaneously

• The queue discipline, which determines which entity departs first if the
queue stores multiple entities

Physical Queues and Logical Queues
In some cases, a queue in a model is similar to an analogous aspect of the
real-world system being modeled. This kind of queue is sometimes called a
physical queue. For example, you might use a queue to represent a sequence of

• People standing in line

• Airplanes waiting to access a runway

• Messages waiting to be sent

• Parts waiting to be assembled in a factory

• Computer programs waiting to be executed

In other cases, a queue in a model does not arise in an obvious way from the
real-world system but instead is included for modeling purposes. This kind of
queue is sometimes called a logical queue. For example, you might use a queue
to provide a temporary storage area for entities that might otherwise have
nowhere to go. Such use of a logical queue can prevent deadlocks or simplify
the simulation. For example, see “Example of a Logical Queue” on page 4-11.

4-2



Role of Queues in SimEvents Models

Accessing Queue Blocks
Queue blocks reside in the Queues library of SimEvents. This chapter focuses
on the FIFO Queue block; for more information about other blocks in the
library, see “Modeling Queues and Servers” online.

Although queuing theory typically treats a queue-server pair as one
component, SimEvents contains queue blocks and server blocks as distinct
components. You often attach a queue block directly to a server block, but you
might also want to use the blocks in other ways.

4-3



4 Basic Queues and Servers

Role of Servers in SimEvents Models
In a discrete-event simulation, a server stores entities for some length of time,
called the service time, and then attempts to output the entity. During the
service period, the block is said to be serving the entity that it stores. An
everyday example of a server is a person (a bank teller, a retail cashier, etc.)
with whom you perform a transaction with a projected duration.

The service time for each entity is computed when it arrives, which contrasts
with the inherent unknowability of the storage time for entities in queues. If
the next block does not accept the arrival of an entity that has completed its
service, however, then the server is forced to hold the entity longer.

Distinguishing features of different servers include

• The number of entities it can serve simultaneously, which could be finite or
infinite

• Characteristics of, or the method of computing, the service times of arriving
entities

• Whether the server permits certain arriving entities to preempt entities
that are already stored in the server

Tip In the absence of preemption, a finite-capacity server does not accept
new arrivals when it is already full. You can place a queue before each
finite-capacity server, establishing a place for entities to stay while they are
waiting for the server to accept them. Otherwise, the waiting entities might
be stored in various different locations in the model and the situation might
be more difficult for you to predict or analyze.

What Servers Represent
In some cases, a server in a model is similar to an analogous aspect of the
real-world system being modeled. For example, you might use a server to
represent

• A person (such as a bank teller) who performs a transaction with each
arriving customer

4-4



Role of Servers in SimEvents Models

• A transmitter that processes and sends messages

• A machine that assembles parts in a factory

• A computer that executes programs

You might use an infinite-capacity server to represent a delaying mechanism.
An example of this is in the subsystem in “Building a Simple Hybrid Model”
on page 2-23.

Servers Inserted for Modeling Purposes
In some cases, a server in a model does not arise in an obvious way from
the real-world system but instead is included for modeling purposes. A
common modeling technique involves a delay of duration zero, that is, an
infinite server whose service time is zero, either to break an algebraic loop
or to provide a place for an entity to reside while a preceding block updates
its output signals. For details and examples, see “Interleaved Operations of
Storage and Nonstorage Blocks” and “Loops in Entity Paths Without Storage
Blocks” online.

Accessing Server Blocks
Server blocks reside in the Servers library of SimEvents. This chapter focuses
on the Single Server block; for more information about other blocks in the
library, see “Modeling Queues and Servers” online.

4-5



4 Basic Queues and Servers

Using FIFO Queue and Single Server Blocks
The example in “Building a Simple Discrete-Event Model” on page 2-2
illustrates how to

• Create a queue-server pair using the FIFO Queue and Single Server blocks

• View statistics from the queue and server blocks, such as blockage of the
queue block’s entity output port and utilization of the server

This section discusses additional aspects of the queue and server blocks, in
these topics:

• “Varying the Service Time” on page 4-6

• “Constructs Involving Queues and Servers” on page 4-8

• “Example of a Logical Queue” on page 4-11

Varying the Service Time
The subsystem described in “Adding Event-Based Behavior” on page 2-24
includes an Infinite Server block that serves each entity for a random amount
of time. The random duration is the value of a signal that serves as an input
to the Infinite Server block. Similarly, the Single Server block can read the
service time from a signal, which enables you to vary the service time for
each entity that arrives at the server.

Some scenarios in which you might use a varying service time are as follows:

• You want the service time to come from a random number generator. In this
case, set the Single Server block’s Service time from parameter to Signal
port t and use the Event-Based Random Number block to generate the
input signal for the Single Server block. Be aware that some distributions
can produce negative numbers, which are not valid service times.

4-6



Using FIFO Queue and Single Server Blocks

• You want the service time to come from data attached to each entity. In
this case, set the Single Server block’s Service time from parameter to
Attribute and set Attribute name to the name of the attribute containing
the service time. An example is in the figure below.

To learn more about attaching data to entities, see “Setting Attributes of
Entities” online.

• You want the service time to arise from dynamics of the simulation. In this
case, set the Single Server block’s Service time from parameter to Signal
port t and create a signal whose value at the time an entity arrives at the
server is equal to the desired service time for that entity.

Example: Using Random Service Times in a Queuing System
Open the model that you created in “Building a Simple Discrete-Event Model”
on page 2-2. By examining the Single Server block’s Service time from and
Service time parameters, you can see that the block is configured to use
a constant service time of 1 second. To use a random service time instead,
follow these steps:

1 Set Service time from to Signal port t. This causes the block to have a
signal input port labeled t.

2 From the Signal Generators sublibrary of the Generators library, drag the
Event-Based Random Number block into the model window and connect it
to the Single Server block’s signal input port labeled t.

4-7



4 Basic Queues and Servers

3 Run the simulation and note how the plot differs from the one corresponding
to constant service times (shown in “Results of the Simulation” on page
2-13).

Constructs Involving Queues and Servers
Here are some examples of ways to combine FIFO Queue and Single Server
blocks to model different situations:

• “Serial Queue-Server Pairs” on page 4-8

• “Parallel Queue-Server Pairs as Alternatives” on page 4-9

• “Parallel Queue-Server Pairs in Multicasting” on page 4-9

• “Serial Connection of Queues” on page 4-10

• “Parallel Connection of Queues” on page 4-11

Serial Queue-Server Pairs
Two queue-server pairs connected in series represent successive operations
that an entity undergoes. For example, parts on an assembly line are
processed sequentially by two machines.

4-8



Using FIFO Queue and Single Server Blocks

While you might alternatively model the situation as a pair of servers without
a queue between them, the absence of the queue means that if the first server
completes service on an entity before the second server is available, the entity
must stay in the first server past the end of service and the first server cannot
accept a new entity for service until the second server becomes available.

Parallel Queue-Server Pairs as Alternatives
Two queue-server pairs connected in parallel, in which each entity arrives at
one or the other, represent alternative operations. For example, vehicles wait
in line for one of several tollbooths at a toll plaza.

Parallel Queue-Server Pairs in Multicasting
Two queue-server pairs connected in parallel, in which a copy of each entity
arrives at both, represent a multicasting situation such as sending a message
to multiple recipients. Note that copying entities might not make sense in
some applications.

4-9



4 Basic Queues and Servers

Serial Connection of Queues
Two queues connected in series might be useful if you are using entities to
model items that physically experience two distinct sets of conditions while in
storage. For example, additional inventory items that overflow one storage
area have to stay in another storage area in which a less well-regulated
temperature affects the items’ long-term quality. Modeling the two storage
areas as distinct queue blocks facilitates viewing the average length of time
that entities stay in the overflow storage area.

A similar example is in “Example of a Logical Queue” on page 4-11, except
that the example there does not suggest any physical distinction between
the two queues.

4-10



Using FIFO Queue and Single Server Blocks

Parallel Connection of Queues
Two queues connected in parallel, in which each entity arrives at one or
the other, represent alternative paths for waiting. The paths might lead to
different operations, such as a line of vehicles waiting for a tollbooth modeled
and a line of vehicles waiting on a jammed exit ramp of the freeway. You
might model the tollbooth as a server and the traffic jam as a gate.

Example of a Logical Queue
Suppose you are modeling a queue that can physically hold 100 entities and
you want to determine what proportion of the time the queue length exceeds
10. You can model the long queue as a pair of shorter queues connected in
series. The shorter queues have length 90 and 10.

Although the division of the long queue into two shorter queues has no basis
in physical reality, it enables you to gather statistics specifically related to one

4-11



4 Basic Queues and Servers

of the shorter queues. In particular, you can view the pending-entity status
signal of the queue having length 90. If the signal is 1 over a nonzero time
interval, then the length-90 queue contains an entity that cannot advance to
the length-10 queue. This means that the length-10 queue is full. As a result,
the physical length-100 queue contains more than 10 items. Determining
the proportion of time the physical queue length exceeds 10 is equivalent
to determining the proportion of time the pending-entity status signal of
the logical length-90 queue equals 1.

4-12



5

Designing Paths for Entities

Role of Paths in SimEvents Models
(p. 5-2)

What entity paths represent

Using the Output Switch (p. 5-5) Selecting one of several ports for an
entity’s departure

Using the Input Switch (p. 5-9) Selecting one of several entity inputs

Combining Entity Paths (p. 5-12) Merging multiple paths into one
path

Example: A Packet Switch (p. 5-16) Example connecting three data
sources to three destinations



5 Designing Paths for Entities

Role of Paths in SimEvents Models
An entity path is a connection from an entity output port to an entity input
port, depicted as a line connecting the entity ports of two SimEvents blocks.
An entity path represents the equivalence between an entity’s departure from
the first block and arrival at the second block. For example, in the model
shown below, any entity that departs from the FIFO Queue block’s OUT port
equivalently arrives at the Single Server block’s IN port.

The existence of the entity path does not guarantee that any entity actually
uses the path; for example, the simulation could be so short that no entities
are ever generated. Even when an entity path is used, it is used only at a
discrete set of times during the simulation.

Implications of Entity Paths
If all blocks in a model have at most one entity input port and at most one
entity output port, then by looking at the entity connection lines, you can
infer the full sequence of blocks that a given entity arrives at, throughout the
simulation.

5-2



Role of Paths in SimEvents Models

In many discrete-event models, however, the set of entity connection lines does
not completely determine the sequence of blocks that each entity arrives at.
For example, the model below shows two queues in a parallel arrangement,
preceded by a block that has one entity input port and two entity output ports.

By looking at the entity connection lines alone, you cannot tell which queue
block’s IN port an entity will arrive at. Instead, you need to know more about
how the one-to-two block (Output Switch) behaves and you might even need
to know the outcome of certain run-time decisions.

Overview of Routing Library for Designing Paths
You design entity paths by choosing or combining entity paths using some
of the blocks in the Routing library of SimEvents. These blocks have extra
entity ports that let you vary the model’s topology (that is, the set of blocks
and connection lines).

Typical reasons for manipulating entity paths are

• To describe an inherently parallel behavior in the situation you are
modeling — for example, a computer cluster with two computers that
share the computing load. You can use the Output Switch block to send
computing jobs to one of the two computers. You might also use the
Path Combiner or Input Switch block if computing jobs share a common
destination following the pair of computers.

• To design nonlinear topologies, such as feedback loops — for example,
repeating an operation if quality criteria such as quality of service (QoS)

5-3



5 Designing Paths for Entities

are not met. You can use the Path Combiner block to combine the paths of
new entities and entities that require a repeated operation.

• To incorporate logical decision making into your simulation — for example,
determining scheduling protocols. You might use the Input Switch block to
determine which of several queues receives attention from a server.

5-4



Using the Output Switch

Using the Output Switch
The Output Switch block in the Routing library selects one among a number
of entity output ports. The selected port can change during the simulation.
You have several options for criteria that the block uses to select an entity
output port.

When the selected port is not blocked, an arriving entity departs through
this port. When the selected port is blocked, however, the entity cannot
arrive at the Output Switch block, even if an unselected entity output port is
not blocked.

Sample Use Cases
Here are some scenarios in which you might use an output switch:

• Entities advance to one of several queues based on efficiency or fairness
concerns. For example, airplanes advance to one of several runways
depending on queue length, or customers advance to the first available
cashier out of several cashiers.

Comparing different approaches to efficiency or fairness, by testing
different rules to determine the selected output port of the output switch,
might be part of your goal in simulating the system.

• Entities advance to a specific destination based on their characteristics.
For example, parcels advance to one of several delivery vehicles based on
the locations of the specified recipients.

• Entities use an alternate route in case the preferred route is blocked. For
example, a communications network drops a packet if the route to the
transmitter is blocked and the simulation gathers statistics about dropped
packets.

5-5



5 Designing Paths for Entities

The topics listed below illustrate the use of the Output Switch block.

Topic Features of Example

“Example: Selecting the First
Available Server” on page 5-6

First port that is not blocked
switching criterion

“Example: Using an Attribute to
Select an Output Port” on page 5-8

Attribute-based switching, where
the attribute value is random

“Example: A Packet Switch” on page
5-16

Attribute-based switching in
conjunction with a Path Combiner
block

“Example: Choosing the Shortest
Queue” online

Switching based on an event-based
computation

“Example: Using Servers in Shifts”
online

Switching based on a time-based
computation

To learn about all supported switching criteria, see the online reference page
for the Output Switch block.

Example: Selecting the First Available Server
In this example, entities arriving at the Output Switch block depart through
the first entity output port that is not blocked, as long as at least one entity
output port is not blocked. An everyday example of this approach is a single
queue of people waiting for service by one of several bank tellers, cashiers,
call center representatives, etc. Each person in the queue wants to advance
as soon as possible to the first available service provider without preferring
one over another.

You can implement this approach by setting the Switching criterion
parameter in the Output Switch block to First port that is not blocked.

5-6



Using the Output Switch

This deterministic model creates one entity every second and attempts to
advance the entity to one of two servers. The two servers have different
service times, both greater than 1 second. The server with the longer service
time becomes available less frequently and has a smaller throughput. The
FIFO Queue block stores entities while both servers are busy. After any
server becomes available, an entity in the queue advances to the Output
Switch, which outputs that entity to that server.

The Output Switch block also outputs a signal containing the index of the
entity output port through which the most recent entity departure occurred.
The Signal Scope block plots the values of this signal. You can see from the
plot that, compared to the first server, the second server processes more
entities because its service time is shorter.

5-7



5 Designing Paths for Entities

Example: Using an Attribute to Select an Output Port
Consider the situation in which parcels are sorted among several delivery
vehicles based on the locations of the specified recipients. If each parcel is an
entity, then you can attach data to each entity to indicate the location of its
recipient. To implement the sorting, set the Switching criterion parameter
in the Output Switch block to From attribute.

The model shown below illustrates the sorting process (but not the delivery
process itself), partitioning the delivery area into three geographic zones.
An entity generator represents sources of parcels addressed to one of the
zones. After being marked with a randomly chosen zone 1, 2, or 3 via the
Set Attribute block, the parcels advance to the queue to wait for sorting.
The Single Server block models the small delay incurred in the sorting
process and sends each parcel through the Output Switch block to one of
three entity output ports. From there, the example merely counts the sorted
entities destined for each zone, but your own simulation might do something
interesting with the outputs from the switch.

5-8



Using the Input Switch

Using the Input Switch
The Input Switch block in the Routing library chooses among a number
of entity input ports. This block selects exactly one entity input port for
potential arrivals and makes all other entity input ports unavailable. The
selected entity input port can change during the simulation. You have several
options for criteria that the block uses for selecting an entity input port.

A typical scenario in which you might use an input switch is when multiple
sources of entities feed into a single queue, where the sequencing follows
specific rules. For example, users of terminals in a time-shared computer
submit jobs to a queue that feeds into the central processing unit, where an
algorithm regulates access to the queue so as to prevent unfair domination
by any one user.

Example: Round-Robin Approach to Choosing Inputs
In a round-robin approach, an input switch cycles through the entity input
ports in sequence. After the last entity input port, the next selection is the
first entity input port. The switch selects the next entity input port after each
entity departure. When the switch selects an entity input port, it makes the
other entity input ports unavailable, regardless of how long it takes for an
entity to arrive at the selected port.

You can implement a round-robin approach by setting the Switching
criterion parameter in the Input Switch block to Round robin.

Consider the following model, in which three sets of entities attempt to arrive
at an Input Switch block with the round-robin switching criterion.

5-9



5 Designing Paths for Entities

The three Set Attribute blocks assign a Type attribute to each entity, where
the attribute value depends on which entity generator created the entity.
FIFO Queue blocks store entities that cannot enter the Input Switch block
yet because either

• The Input Switch is waiting to receive an entity at a different entity input
port, according to the round-robin switching criterion.

• The Single Server block is busy serving an entity, so its entity input port is
unavailable.

The Signal Scope block creates a a stem plot of the Type attribute values
over time. Because the Type attribute identifies the source of each entity
that arrives at the scope, you can see the effect of the round-robin switching
criterion. In particular, the heights of the stems in the plot cycle among the
values 1, 2, and 3.

5-10



Using the Input Switch

5-11



5 Designing Paths for Entities

Combining Entity Paths
You can merge multiple paths into a single path using the Path Combiner
block. Merging entity paths does not change the entities themselves, just as
merging lanes on a road does not change the vehicles that travel on it. In
particular, the Path Combiner block does not create aggregates or batches.

Here are some scenarios in which you might combine entity paths:

• Multiple entity generator blocks create entities having different values for
a particular attribute. The entities then follow a merged path but might be
treated differently later based on their individual attribute values.

• Multiple queues merge into a single queue. (You might also use an Input
Switch block for this, depending on the desired sequencing of entities in
the single queue.)

5-12



Combining Entity Paths

• A feedback path enters the same queue as an ordinary path.

Sequencing Simultaneous Pending Arrivals
The Path Combiner block does not experience any collisions, even if multiple
entities attempt to arrive at the same time. The categories of behavior are as
follows:

• If the entity output port is not blocked when the entities attempt to arrive,
then the sequence of arrivals depends on the sequence of departure events
from blocks that precede the Path Combiner block. Although the departure
time is the same for all such entities, the sequence might affect the system’s
behavior. For example, if the entities advance to a queue, the departure
sequence determines their positions in the queue.

• If pending entities are waiting to advance to the Path Combiner block when
its entity output port changes from blocked to unblocked, then the entity
input ports are notified of the change sequentially. The change from blocked
to unblocked means that an entity can advance to the Path Combiner block.

If at least two entities are waiting to advance to the Path Combiner block
via distinct entity input ports, then the notification sequence is important
because the first port to be notified of the change is the first to advance
an entity to the Path Combiner block. The Input port precedence
parameter determines which of the block’s entity input ports is first in
the notification sequence. For the list of options, see the online reference
page for the Path Combiner block.

Example: Significance of Input Port Precedence
Consider the sequence of blocks in the figure below, in which a Path Combiner
block merges three small queues into a single large queue.

5-13



5 Designing Paths for Entities

Suppose the server is busy serving an entity, the single large queue (FIFO
Queue4) is full, and each of the three small queues is nonempty. In this
situation, the Path Combiner block’s entity output port is blocked. When the
entity in the server departs, an entity from the large queue advances to the
server. The large queue is no longer full, so its entity input port becomes
available. As a result, the Path Combiner block’s entity output port changes
from blocked to unblocked. The Path Combiner block uses the Input port
precedence parameter to determine the sequence by which to notify entity
input ports of the change. The sequence of notifications determines which of
the three small queues is the first to advance an entity to the large queue
via the Path Combiner block.

The Input port precedence parameter is relevant only when the entity
output port changes from blocked to unblocked; the parameter is irrelevant in
other situations. For example, if the large queue has infinite capacity, or if
at most one of the three small queues is nonempty at any given time during
the entire simulation, then all settings for the Input port precedence
produce the same behavior.

Difference Between Path Combiner and Input Switch
The Input Switch block, described in “Using the Input Switch” on page 5-9,
has multiple entity input ports and one entity output ports. The same is true
for the Path Combiner block. These two blocks differ in that

• The Path Combiner block’s acceptance of an entity arrival does not depend
on which port the entity arrives at. By contrast, the Input Switch block

5-14



Combining Entity Paths

accepts only those entities that arrive at the block’s selected entity input
port.

• The Path Combiner block’s Input port precedence parameter is relevant
only in the specific situation described in “Input Port Precedence” online.
By contrast, the Input Switch block’s Switching criterion parameter
governs the block’s behavior throughout the simulation.

When deciding whether to use a Path Combiner or Input Switch block in your
model, consider how you want the simulation to behave when one source of
entities is dormant for a long time but another source of entities is not. If
you want the routing block to wait until an entity finally departs from the
dormant source, then an Input Switch block would be more appropriate. If
you want the routing block to accept arrivals from other entity sources that
are not dormant, then a Path Combiner block would be more appropriate.

5-15



5 Designing Paths for Entities

Example: A Packet Switch
A packet switch is a component of a communication network that connects
several sources of data packets with several destinations. The switch directs
each packet to the correct destination, processing packets as they arrive. The
switch must be able to handle the situation in which several data packets
have the same arrival time and the same destination. Packet switches can
use a variety of architectures and algorithms, and this section describes how
to construct one particular packet switch model.

The goal in this example is to construct a switch that

• Connects three data sources to three destinations

• Holds arriving packets in a buffer (that is, a queue) for each of the data
sources

• Randomly resolves contention if two or more simultaneous packets at the
head of their respective queues share the same intended destination, with
no bias to any particular source of packets

The example model accommodates variable-length packets and assumes that
packets from each data source have exponential interarrival times.

The figure below shows an overview of the block diagram.

5-16



Example: A Packet Switch

The following sections describe portions of the model in detail:

• “Generating Packets” on page 5-17

• “Storing Packets in Input Buffers” on page 5-19

• “Routing Packets to Their Destinations” on page 5-20

• “Connecting Multiple Queues to the Output Switch” on page 5-20

• “Modeling the Channels” on page 5-21

Generating Packets
The packet switch example models each packet as an entity. The Time-Based
Entity Generator block creates entities. To implement exponentially
distributed intergeneration times between successive entities from each
source, the block has its Distribution parameter set to Exponential.

5-17



5 Designing Paths for Entities

Attached to each entity are these pieces of data, stored in attributes:

• The source of the packet, an integer between 1 and 3

• The destination of the packet, a random integer between 1 and 3

• The length of the packet, a random integer between 6 and 10

Note The entity does not actually carry a payload because this example
models the transmission of data at a level of abstraction that includes timing
and routing behaviors but that is not concerned with the specific user data in
each packet.

Copies of the Event-Based Random Number block produce the random
destination and length data. The Set Attribute block attaches all the data to
each entity. The Set Attribute block is configured so that the destination
and length come from input signals, while the source number comes from a
constant in the dialog box.

The packet generation processes for the different sources differ only in the
initial seeds for the random number generators and the values for the source
attribute.

5-18



Example: A Packet Switch

Storing Packets in Input Buffers
The packet switch example uses one FIFO Queue block as a buffer following
each data source’s Set Attribute block.

The queue uses a FIFO queuing discipline, which does not take into account
the destination of each packet. Note that such a model can suffer from
“head-of-queue blocking,” which occurs when a packet not at the head of the
queue is forced to wait even when its destination is available, just because the
packet at the head of the queue is aiming for an unavailable destination.

5-19



5 Designing Paths for Entities

Routing Packets to Their Destinations
A core block in the packet switch example is the Output Switch block. This
block sorts arriving entities so that they depart at the appropriate entity
output port based on the entities’ Destination attribute.

This part of the example is similar to the model shown in “Example: Using an
Attribute to Select an Output Port” on page 5-8.

Connecting Multiple Queues to the Output Switch
The packet switch model needs a way for entities to advance from the three
queues to the single entity input port of the Output Switch block. Candidate
blocks are Input Switch and Path Combiner. The Path Combiner block is
more appropriate because it processes entities as they arrive from any of the
entity input ports, whereas the Input Switch block would restrict arrivals to
a specific selected entity input port.

5-20



Example: A Packet Switch

Contention among packets can occur in these ways:

• Multiple packets from different sources with the same intended destination
arrive simultaneously at an empty queue and immediately attempt to
arrive at the path combiner.

Although the arrivals occur at the same simulation time value, the
processing sequence depends on

- The priorities of the entity generation events. In this example, all
Time-Based Entity Generator blocks share the same Generation event
priority parameter value.

- The Execution order of simultaneous events parameter in the
model’s Configuration Parameters dialog box. In this example, the
parameter is set to Randomize.

As a result, when two packets are generated at the same time, the sequence
of generation events in this example is random.

• Multiple packets with the same intended destination are at the head of
their respective queues precisely when the Path Combiner block’s entity
output port changes from blocked to unblocked.

For example, suppose all of the queues have leading packets destined
for the first server, which is busy serving an earlier packet. The Path
Combiner block’s entity output port is blocked. When the server completes
service on the earlier packet, the Path Combiner block’s entity output port
becomes unblocked. At that moment, the Path Combiner block notifies its
entity input ports of the change in status, in a sequence determined by
the Input port precedence parameter. In this example, the parameter
is set to Equiprobable. As a result, when packets waiting at the head
of their queues have the same intended destination that changes from
unavailable to available, the sequence in which these packets are selected
for advancement is random.

Modeling the Channels
The packet switch examples does not model the channel in detail. The
channel’s key purpose is to process one packet at a time, for a duration that
depends on the length of the packet. During processing, other packets bound
for the same destination must wait, which introduces resource contention
into the simulation.

5-21



5 Designing Paths for Entities

Each channel is modeled as a Single Server block that delays each entity by
an amount of time stored in the entity’s Length attribute. Each destination
is modeled as an Entity Sink block.

5-22



6

Selected Bibliography

[1] Banks, Jerry, John Carlson, and Barry Nelson, Discrete-Event System
Simulation, Second Ed., Upper Saddle River, N.J., Prentice-Hall, 1996.

[2] Cassandras, Christos G., Discrete Event Systems: Modeling and
Performance Analysis, Homewood, Illinois, Irwin and Aksen Associates, 1993.

[3] Cassandras, Christos G., and Stéphane Lafortune, Introduction to Discrete
Event Systems, Boston, Kluwer Academic Publishers, 1999.

[4] Fishman, George S., Discrete-Event Simulation: Modeling, Programming,
and Analysis, New York, Springer-Verlag, 2001.

[5] Gordon, Geoffery, System Simulation, Second Ed., Englewood Cliffs, N.J.,
Prentice-Hall, 1978.

[6] Kleinrock, Leonard, Queueing Systems, Volume I: Theory, New York,
Wiley, 1975.

[7] Law, Averill M., and W. David Kelton, Simulation Modeling and Analysis,
3rd Ed., New York, McGraw-Hill, 1999.

[8] Moler, C., “Floating points: IEEE Standard unifies arithmetic model,”
Cleve’s Corner, The MathWorks, Inc., 1996. You can find this article at http://
www.mathworks.com/company/newsletter/clevescorner/

[9] Watkins, Kevin, Discrete Event Simulation in C, London, McGraw-Hill,
1993.

[10] Zeigler, Bernard P., Herbert Praehofer, and Tag Gon Kim, Theory of
Modeling and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems, Second Ed., San Diego, Academic Press, 2000.



6 Selected Bibliography

6-2



Index

IndexA
attributes of entities

definition 3-2
routing 5-8

available entity ports 2-34
average waiting time signal 2-17

B
blockage of entity output port 2-14

head-of-queue 5-19

C
channel, modeled as server 5-21
combining entity paths 5-12
connection lines 1-10

D
D/D/1 queuing systems 2-2
delays

flight controller 2-23
visualizing 2-28

discrete-event simulation 1-2
dynamic voltage scaling demo 1-11

E
entities

creating 3-2
definition 1-6
graphical depiction 2-34
intergeneration distribution 3-4

example 3-9
intergeneration signal 3-6
pending 2-14
simultaneous arrivals 5-13

entity collisions 5-13
entity connection lines 1-10
entity data

definition 3-2
routing 5-8

entity generation
intergeneration distribution 3-4
intergeneration signal 3-6
vector of times 3-11

entity interpretations 1-6
entity paths

activity along 2-34
definition 5-2
first available 5-6
graphical depiction 1-10
merging 5-12
round robin 5-9

entity ports 1-10
entity sources 3-2
event-based simulation

compared to time-based simulation 1-2
events 1-7
exponential distribution 3-4

F
feedback entity paths 5-13

H
head-of-queue blocking 5-19

I
infinite-capacity servers 4-5
input port precedence 5-13
input ports

for entities 1-10
for signals 1-11

Input Switch block
compared with Path Combiner block 5-14
usage 5-9

intergeneration times
distribution 3-4

Index-1



Index

random 3-9
signal 3-6
step function example 3-7

L
libraries 2-4
logical queues

definition 4-2
example 4-11

M
mean waiting time signal 2-17
merging entity paths 5-12

O
output ports

for entities 1-10
for signals 1-11

Output Switch block
attribute-based routing 5-8
first available 5-6
usage 5-5

P
packet switching example 5-16
Path Combiner block

compared with Input Switch block 5-14
pe signal 2-15
pending entities 2-14

Q
queue-server pairs 4-3
queues 4-2
queuing systems

combinations of blocks 4-8
D/D/1 2-2

series vs. parallel 4-8
two queues 4-10

R
references 6-1
repeatability 3-5
round robin 5-9

S
seed of random number generator 3-5
servers 4-4
service times

definition 4-4
from signal 4-6
random 4-7

signal ports 1-11
SimEvents libraries 2-4
simeventsconfig function 2-12
simeventsstartup function 2-3
simulation parameters

changing 2-12
default 2-3

simultaneous events 1-7
merging entity paths 5-13

sources of entities 3-2
statistical signals 2-17
switching entity paths

at input 5-9
at output 5-5
based on attribute 5-8
based on availability 5-6
packet switch example 5-20
round robin 5-9

T
Time-Based Entity Generator block 3-3

Index-2



Index

U
unavailable entity ports 2-34
uniform distribution 3-4
utilization signal 2-17

W
warnings during simulation 2-12

Index-3


	toc
	Introduction
	What Is SimEvents?
	What Is Discrete-Event Simulation?
	Resources for Learning
	New Discrete-Event Simulation Modelers
	New Simulink Users
	Experienced Simulink Users
	Notes on Engineering Subject Matter


	Installing SimEvents
	What Is an Entity?
	What Is an Event?
	Relationships Among Events
	Viewing Events

	Running a Demo Simulation
	Opening the Model
	Examining Entities and Signals in the Model
	Entity Ports and Connections
	Signals and Signal Ports

	Key Components of the Model
	Appearance of Entities

	Running the Simulation


	Building Simple Models with SimEvents
	Building a Simple Discrete-Event Model
	Opening a Model and Libraries
	Setting Default Parameters for Discrete-Event Simulation
	Opening a New Model Window
	Opening SimEvents Libraries
	Opening Simulink Libraries

	Moving Blocks into the Model Window
	Configuring Blocks
	Connecting Blocks
	Running the Simulation
	Suppressing Solver Warnings
	Results of the Simulation

	Creating Additional Plots
	Enabling the Pending-Entity Signal
	Plotting the Pending-Entity Signal
	Simulating with Different Intergeneration Times
	Viewing Waiting Times and Utilization
	Observations from Plots

	Information About Race Conditions and Random Times

	Building a Simple Hybrid Model
	Opening a Time-Based Simulink Demo
	Adding Event-Based Behavior
	Behavior of the Subsystem
	How to Build the Subsystem

	Running the Hybrid F-14 Simulation
	Changing the Latency

	Visualizing the Sampling and Latency
	Modifying the Model to Drop Some Messages
	Behavior of the Modified Subsystem
	How to Modify the Subsystem


	Key SimEvents Concepts
	Meaning of Entities in Different Applications
	Entity Ports and Paths
	Data and Signals


	Creating Entities Using Intergeneration Times
	Role of Entities in SimEvents Models
	Data and Entities
	Creating Entities in a Model
	Varying the Interpretation of Entities

	Introduction to the Time-Based Entity Generator
	Accessing the Time-Based Entity Generator

	Specifying the Distribution of Intergeneration Times
	Example: Using Random Intergeneration Times in a Queuing System

	Using Intergeneration Times from a Signal
	Example: Using a Step Function as Intergeneration Time
	Example: Using an Arbitrary Discrete Distribution as Intergenera

	Using Generation Times from a Vector
	Configuring the Block to Generate Entities at Specified Times
	Sample Use Cases


	Basic Queues and Servers
	Role of Queues in SimEvents Models
	Physical Queues and Logical Queues
	Accessing Queue Blocks

	Role of Servers in SimEvents Models
	What Servers Represent
	Servers Inserted for Modeling Purposes

	Accessing Server Blocks

	Using FIFO Queue and Single Server Blocks
	Varying the Service Time
	Example: Using Random Service Times in a Queuing System

	Constructs Involving Queues and Servers
	Serial Queue-Server Pairs
	Parallel Queue-Server Pairs as Alternatives
	Parallel Queue-Server Pairs in Multicasting
	Serial Connection of Queues
	Parallel Connection of Queues

	Example of a Logical Queue


	Designing Paths for Entities
	Role of Paths in SimEvents Models
	Implications of Entity Paths
	Overview of Routing Library for Designing Paths

	Using the Output Switch
	Sample Use Cases
	Example: Selecting the First Available Server
	Example: Using an Attribute to Select an Output Port

	Using the Input Switch
	Example: Round-Robin Approach to Choosing Inputs

	Combining Entity Paths
	Sequencing Simultaneous Pending Arrivals
	Example: Significance of Input Port Precedence

	Difference Between Path Combiner and Input Switch

	Example: A Packet Switch
	Generating Packets
	Storing Packets in Input Buffers
	Routing Packets to Their Destinations
	Connecting Multiple Queues to the Output Switch
	Modeling the Channels


	Selected Bibliography
	Index


